
Exact pattern matching
& string search

In reality, we would not use exact matching for this; why?

However, exact matching is useful here:

• Find all places where a substring of the
query matches the reference exactly (seeds)

• Filter out regions with insufficient exact
matches to warrant further investigation

• Perform a “constrained” alignment that
includes these exact matching “seeds”

Requires
efficient
exact search

Here is where
we use efficient algorithms
for inexact matching
(alignment)

Why Exact Matching?
As loose motivation, consider the problem of mapping a
read r to the genome G.

Exact String Matching Problem

Today, we’ll talk about exact matching algorithms that are
quadratic (no better than alignment!) and linear. Then
we’ll start talking about much faster approaches, but they
require pre-processing the reference.

Exact String Matching Problem

Given: A string T (called the text) and a string
 P (called the pattern).

Find: All occurrences of P in T.

ATACATACCCATATACGAGGCATACATGGCGAGTGTGC

|T| > |P|
An occurrence of P in T is a substring of T equal to P

T =
P = CGAG

CGAG CGAG

Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

CGAG CGAG

An alignment of P to T is a correspondence (not
necessarily an occurrence) between a substring of T
and P

all occurrences are alignments but not all alignments are occurrences

CGAGCGAG
alignment 1 alignment 2 alignment 3 alignment 4

(occurrence 1) (occurrence 2)

Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

How many possible alignments of P are there in T?

CGAG
CGAG

CGAG
CGAG…

Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

How many possible alignments of P are there in T?

CGAG
CGAG

CGAG
CGAG…

|T| - |P| + 1

A naive algorithm

What is the simplest algorithm you can think
of to solve the exact string matching problem?

Seriously, I’m not going to change the slide until
somebody suggests something really naive!

A naive algorithm
Naive algorithm 1: Consider all alignments of P to T, and
report each alignment that is an occurrence.

def naive(T, P):
 N = len(T)
 M = len(P)
 occs = []
 for i in range(N - M + 1):
 if P == T[i:i+M]:
 occs.append(i)
 return occs

def naive(T, P):
 N = len(T)
 M = len(P)
 occs = []
 for i in xrange(N - M + 1):
 if P == T[i:i+M]:
 occs.append(i)
 return occs

A naive algorithm

Worst-case Runtime?

A naive algorithm

def naive(T, P):
 N = len(T)
 M = len(P)
 occs = []
 for i in range(N - M + 1):
 if P == T[i:i+M]:
 occs.append(i)
 return occs

O(N)

O(M) — note,
a “stupid” implementation
of this takes M time while a
reasonable version quits at
the first mismatching
character

O(N) * O(M) = O(NM) time

A naive algorithm

Best scenario for naive:

T: GAGAGGAGTTATATATGAATAGAGATAGAGACGAG

P: CGAG

Because every alignment but the last disagrees
on the very first character, the inner loop takes O(1) time,

except for the single match which takes O(M) time
O(N+M)

A naive algorithm

Worst scenario for naive:

T: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

P: CCCCG

Because every alignment is a match for
P, the inner loop requires M char. compares each time

O(NM)

A naive algorithm

There’s a big gap between
 The best case time for naive O(N+M) and
 The worst case time for naive O(NM)

How can we improve the worst case time?

Can we devise a method that is O(N+M) even
in the worst case?

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i that matches a prefix of T.

T:

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:

Naïvely, there is an O(?) algorithm to compute the z values

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:

Naïvely, there is an O(T2) algorithm to compute the z values

Ignore this complexity for a second; how could we use  
z values to solve exact pattern matching?

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i in T that matches a prefix of P.

T:
P: ACA

Ignore this complexity for a second; how could we use  
z values to solve exact pattern matching?

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting
at i in T that matches a prefix of P.

T:P$ ACA$

Now, any Zi value = |P| designates that an occurrence of P
exists at position i in T.

Note: $ ∉ Σ ensures that Zi is always ≤ |P|

Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAAT:P$ ACA$

Now that the longest possible Zi is ≤ |P| then we are back
to an O(|T| |P|) algorithm … back to the problem at hand;
how do we make this better?

Z boxes (boxen?)

ATACGGCACATACCATACGAATATACAAA
-10100001040100501001304010111

T:
ZT:

Imagine a “box” (possibly of length 0) starting at every
position. The left-most end of the box is where the match
with the prefix begins, and each box extends Zi
characters to the right (to position i + Zi - 1).

Z Boxes

• Algorithm for computing Zi will iteratively compute Zk given:

- Z2...Zk-1, and

- the boundaries l, r of the rightmost Z-box found starting
someplace in 2…k-1.

- you don’t need l to understand how the algorithm works, but it
is required to efficiently compute the necessary quantities

Zi

i i+Zi -1

Def. Z-box at i is the substring starting at i and continuing to
i+Zi-1. This is the substring that matches the prefix. There is
no Z-box at i if Zi = 0.

Z-box at i

Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2...k-1.

• Output: Zk, and updated l, r

1. If k > r, explicitly compute Zk by comparing with prefix.  
If Zk > 0: l = k and r = k + Zk - 1 (since this is a new farther right Z-box).

krl

The current index is beyond the bound of the rightmost z-box.

The structure of the rightmost z-box can not tell us what to expect for Zk

Compute Zk by explicit comparison and update l,r if Zk > 0

Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β| : Then the ɣ that is a prefix of β is also a prefix of ⍺, but
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

x?

Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β| : Then the ɣ that is a prefix of β is also a prefix of ⍺, but
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

Slide adapted from material by Carl Kingsford

e.g. ACAGTTACAAGT ACAGTTACAAGT…

y≠x

⍺ ⍺

⍺ =ACAGTTACAAGT
β =ACAAGT
ɣ=ACA

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

If x = y, then Zk’ > |ɣ|, because the shared prefix starting at k’ and 0 would
had to have been longer.

Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

If x = y, then Zk’ > |ɣ|, because the shared prefix starting at k’ and 0 would
had to have been longer. But β = β, so Zk = Zk’

In this case, set Zk = Zk’ and leave l, r unchanged.
Slide adapted from material by Carl Kingsford

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the
beginning of T, but, it cannot (completely) match the substring starting at
k … why?

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy ?

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the
beginning of T, but, it cannot (completely) match the substring starting at
k … why?

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy ?

Note: Here, we are not necessarily saying that the “Z-box” starting at 0
(ill-defined anyway) is of length |⍺|; Rather ⍺ is defined by Zl

ACAGTGACAGTT …

⍺ ⍺

e.g. ACAGTGACAGAT

=ACAGTGACAG⍺
β =ACAG
ɣ =ACAGT

Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the
beginning of T, but, it cannot (completely) match the substring starting at
k … why?

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy x

x ≠ y

If it did, then the z-box starting at position l, would be longer (extend past
r), contradicting the fact that Zl is the longest substring starting at l that
matches a prefix of T.

Set Zk = |β| and leave l, r unchanged.

Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same
as the character following the length β prefix of the string … why?

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
p? x

Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same
as the character following the length β prefix of the string … why?

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
pq x

q≠p

If q = p, then Zk’ would have length > |β|
What do we know about x … x ≠ p. Is x = q?

ACAGTGACAGAG …

⍺ ⍺

e.g.

=ACAGTGACAG⍺
β =ACAG

ACAGTGACAGTC

Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same
as the character following the length β prefix of the string … why?

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting

someplace in 2…k-1.

• Output: Zk, and updated l, r

If k ≤ r, this is the situation:

Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
pq x

q≠p

If q = p, then Zk’ would have length > |β|
What do we know about x … x ≠ p. Is x = q? We don’t know! Must check.

Explicitly compare after r to set Zk. l = k, r = point where comparison failed

Analysis
• Correctness follows by induction and the arguments we made in the

description of the algorithm.

• If you follow all of the sub-cases, the correctness of z-alg is implied

• Runs in O(|P|+|T|) time:

- only match characters covered by a Z-box once, so there are O(|P|+|T|)
matches.

- every iteration contains at most one mismatch, so there are O(|P|+|T|)
mismatches.

• Immediately gives an O(|P| + |T|)-time algorithm for string matching as
described a few slides ago.

- O(|P| + |T|) is the best possible worst-case running time, since you might have to
look at the whole input.

- But better algorithms exist in practice that, for real instances, have expected
sublinear runtime.

Slide adapted from material by Carl Kingsford

Summary

The pattern matching problem seeks to find all
occurrences of a pattern P in a text T

The naive algorithm for the problem takes O(MN)
time

By exploiting structure in the pattern, we reduce
the worst case runtime to O(M+N)

