
Exact pattern matching 
& string search



In reality, we would not use exact matching for this; why?

However, exact matching is useful here:

• Find all places where a substring of the 
query matches the reference exactly (seeds) 

• Filter out regions with insufficient exact 
matches to warrant further investigation 

• Perform a “constrained” alignment that 
includes these exact matching “seeds”

Requires 
efficient  
exact search

Here is where 
we use efficient algorithms 
for inexact matching  
(alignment)

Why Exact Matching?
As loose motivation, consider the problem of mapping a 
read r to the genome G.



Exact String Matching Problem

Today, we’ll talk about exact matching algorithms that are 
quadratic (no better than alignment!) and linear.  Then 
we’ll start talking about much faster approaches, but they 
require pre-processing the reference.



Exact String Matching Problem

Given: A string T (called the text) and a string      
         P (called the pattern). 

Find: All occurrences of P in T. 

ATACATACCCATATACGAGGCATACATGGCGAGTGTGC

|T| > |P|
An occurrence of P in T is a substring of T equal to P

T =
P = CGAG

CGAG CGAG



Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

CGAG CGAG

An alignment of P to T is a correspondence (not 
necessarily an occurrence) between a substring of T 
and P 

all occurrences are alignments but not all alignments are occurrences

CGAGCGAG
alignment 1 alignment 2 alignment 3 alignment 4

(occurrence 1) (occurrence 2)



Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

How many possible alignments of P are there in T?

CGAG
CGAG

CGAG
CGAG…



Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

How many possible alignments of P are there in T?

CGAG
CGAG

CGAG
CGAG…

|T| - |P| + 1



A naive algorithm

What is the simplest algorithm you can think 
of to solve the exact string matching problem?

Seriously, I’m not going to change the slide until 
somebody suggests something really naive!



A naive algorithm
Naive algorithm 1: Consider all alignments of P to T, and 
report each alignment that is an occurrence.

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in range(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs



def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

A naive algorithm

Worst-case Runtime?



A naive algorithm

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in range(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

O(N)

O(M) — note, 
a “stupid” implementation 
of this takes M time while a 
reasonable version quits at 
the first mismatching 
character

O(N) * O(M) = O(NM) time



A naive algorithm

Best scenario for naive:

T:  GAGAGGAGTTATATATGAATAGAGATAGAGACGAG

P:  CGAG

Because every alignment but the last disagrees 
on the very first character, the inner loop takes O(1) time, 

except for the single match which takes O(M) time 
O(N+M)



A naive algorithm

Worst scenario for naive:

T:  CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

P:  CCCCG

Because every alignment is a match for 
P, the inner loop requires M char. compares each time 

O(NM)



A naive algorithm

There’s a big gap between  
 The best case time for naive O(N+M) and  
 The worst case time for naive O(NM)

How can we improve the worst case time?

Can we devise a method that is O(N+M) even  
in the worst case?



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i that matches a prefix of T.

T:



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:

Naïvely, there is an O(?) algorithm to compute the z values 



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i that matches a prefix of T.

-10100001040100501001304010111
T:

ZT:

Naïvely, there is an O(T2) algorithm to compute the z values 

Ignore this complexity for a second; how could we use  
z values to solve exact pattern matching?



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i in T that matches a prefix of P.

T:
P: ACA

Ignore this complexity for a second; how could we use  
z values to solve exact pattern matching?



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAA

Def: Let Zi be the length of the longest substring starting 
at i in T that matches a prefix of P.

T:P$ ACA$

Now, any Zi value = |P| designates that an occurrence of P 
exists at position i in T.

Note: $ ∉ Σ ensures that Zi is always ≤ |P|



Z boxes and the Z algorithm

ATACGGCACATACCATACGAATATACAAAT:P$ ACA$

Now that the longest possible Zi is ≤ |P| then we are back  
to an O(|T| |P|) algorithm … back to the problem at hand; 
how do we make this better?



Z boxes (boxen?)

ATACGGCACATACCATACGAATATACAAA
-10100001040100501001304010111

T:
ZT:

Imagine a “box” (possibly of length 0) starting at every 
position.  The left-most end of the box is where the match 
with the prefix begins, and each box extends Zi 
characters to the right (to position i + Zi - 1).



Z Boxes

• Algorithm for computing Zi will iteratively compute Zk given:  

- Z2...Zk-1, and 

- the boundaries l, r of the rightmost Z-box found starting 
someplace in 2…k-1. 

- you don’t need l to understand how the algorithm works, but it 
is required to efficiently compute the necessary quantities

Zi

i i+Zi -1

Def. Z-box at i is the substring starting at i and continuing to 
i+Zi-1. This is the substring that matches the prefix. There is 
no Z-box at i if Zi = 0.

Z-box at i

Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2...k-1.


• Output: Zk, and updated l, r

1. If k > r, explicitly compute Zk by comparing with prefix.  
If Zk > 0: l = k and r = k + Zk - 1 (since this is a new farther right Z-box).

krl

The current index is beyond the bound of the rightmost z-box.

The structure of the rightmost z-box can not tell us what to expect for Zk

Compute Zk by explicit comparison and update l,r if Zk > 0

Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β| : Then the ɣ that is a prefix of β is also a prefix of ⍺, but 
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

x?

Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β| : Then the ɣ that is a prefix of β is also a prefix of ⍺, but 
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but 
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

Slide adapted from material by Carl Kingsford

e.g. ACAGTTACAAGT ACAGTTACAAGT…

y≠x

⍺ ⍺

⍺ =ACAGTTACAAGT
β =ACAAGT
ɣ=ACA



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but 
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

If x = y, then Zk’ > |ɣ|, because the shared prefix starting at k’ and 0 would 
had to have been longer.

Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2a :

k rlk’ = k-l+1

ββ

Zk’ < |β|:

ɣɣɣ

Zk’ < |β|: Then the ɣ that is a prefix of β is also a prefix of ⍺, but 
the character occurring after the ɣ starting at k’ is not the same as the

character after the ɣ starting at the beginning of the string … why?

⍺ ⍺

xy

y≠x

If x = y, then Zk’ > |ɣ|, because the shared prefix starting at k’ and 0 would 
had to have been longer. But β = β, so Zk = Zk’

In this case, set Zk = Zk’ and leave l, r unchanged.
Slide adapted from material by Carl Kingsford



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the 
beginning of T, but, it cannot (completely) match the substring starting at 
k … why?

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy ?



Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the 
beginning of T, but, it cannot (completely) match the substring starting at 
k … why?

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy ?

Note: Here, we are not necessarily saying that the “Z-box” starting at 0 
(ill-defined anyway) is of length |⍺|; Rather ⍺ is defined by Zl

ACAGTGACAGTT …

⍺ ⍺

e.g. ACAGTGACAGAT

=ACAGTGACAG⍺
β =ACAG
ɣ =ACAGT



Zk’ > |β|: Then the ɣ that starts at k’ matches the ɣ that starts at the 
beginning of T, but, it cannot (completely) match the substring starting at 
k … why?

Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2b :

k rlk’ = k-l+1

Zk’ > |β|:

ɣ

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
ɣ yy x

x ≠ y

If it did, then the z-box starting at position l, would be longer (extend past 
r), contradicting the fact that Zl is the longest substring starting at l that 
matches a prefix of T.

Set Zk = |β| and leave l, r unchanged.



Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same 
as the character following the length β prefix of the string … why?

Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
p? x



Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same 
as the character following the length β prefix of the string … why?

Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
pq x

q≠p

If q = p, then Zk’ would have length > |β|
What do we know about x … x ≠ p. Is x = q?

ACAGTGACAGAG …

⍺ ⍺

e.g.

=ACAGTGACAG⍺
β =ACAG

ACAGTGACAGTC



Zk’ = |β|: Then the character following the z-box of Zk’, cannot be the same 
as the character following the length β prefix of the string … why?

Z Algorithm
• Input:  Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found starting 

someplace in 2…k-1.


• Output: Zk, and updated l, r

If k ≤ r, this is the situation:


Case 2c :

k rlk’ = k-l+1

Zk’ = |β|:

⍺ ⍺

Slide adapted from material by Carl Kingsford

β ββ
pq x

q≠p

If q = p, then Zk’ would have length > |β|
What do we know about x … x ≠ p. Is x = q? We don’t know! Must check.

Explicitly compare after r to set Zk. l = k, r = point where comparison failed



Analysis
• Correctness follows by induction and the arguments we made in the 

description of the algorithm. 

• If you follow all of the sub-cases, the correctness of z-alg is implied 

• Runs in O(|P|+|T|) time:  

- only match characters covered by a Z-box once, so there are O(|P|+|T|) 
matches. 

- every iteration contains at most one mismatch, so there are O(|P|+|T|) 
mismatches. 

• Immediately gives an O(|P| + |T|)-time algorithm for string matching as 
described a few slides ago. 

- O(|P| + |T|) is the best possible worst-case running time, since you might have to 
look at the whole input. 

- But better algorithms exist in practice that, for real instances, have expected 
sublinear runtime.

Slide adapted from material by Carl Kingsford



Summary

The pattern matching problem seeks to find all 
occurrences of a pattern P in a text T

The naive algorithm for the problem takes O(MN) 
time

By exploiting structure in the pattern, we reduce 
the worst case runtime to O(M+N)


